

UL HPC School 2017 PS3a: Advanced Scheduling with SLURM and OAR on UL HPC clusters

UL High Performance Computing (HPC) Team

V. Plugaru

University of Luxembourg (UL), Luxembourg http://hpc.uni.lu

Latest versions available on Github:

UL HPC tutorials:

https://github.com/ULHPC/tutorials

http://hpc.uni.lu/hpc-school/

UL HPC School:

PS3a tutorial sources:

https://github.com/ULHPC/tutorials/tree/devel/advanced/advanced_scheduling

V. Plugaru (University of Luxembourg)

Introduction

Summary

SLURM workload manager SLURM concepts and design for iris Running jobs with SLURM

3 OAR and SLURM

4 Conclusion

Introduction

Main Objectives of this Session

- Design and usage of SLURM
 - \hookrightarrow cluster workload manager of the UL HPC iris cluster

The tutorial will show you:

- the way SLURM was configured, accounting and permissions
- common and advanced SLURM tools and commands
 - $\,\hookrightarrow\,$ srun, sbatch, squeue etc.
 - $\, \hookrightarrow \, \text{ job specification}$
 - $\, \hookrightarrow \, \, {\sf SLURM} \, \, {\sf job} \, \, {\sf types}$
 - $\,\hookrightarrow\,$ comparison of SLURM (iris) and OAR (gaia & chaos)
- SLURM generic launchers you can use for your own jobs

Documentation & comparison to OAR

https://hpc.uni.lu/users/docs/scheduler.html

4 / 43

V. Plugaru (University of Luxembourg)

Summary

SLURM workload manager SLURM concepts and design for iris Running jobs with SLURM

3 OAR and SLURM

SLURM - core concepts

- SLURM manages user jobs with the following key characteristics:
 - \hookrightarrow set of requested resources:
 - $\checkmark~$ number of computing resources: nodes (including all their CPUs and cores) or CPUs (including all their cores) or cores
 - $\checkmark\,$ amount of memory: either per node or per (logical) CPU
 - \checkmark (wall)time needed for the user's tasks to complete their work
 - $\,\hookrightarrow\,$ a requested node partition (job queue)
 - \hookrightarrow a requested quality of service (QoS) level which grants users specific accesses
 - \hookrightarrow a requested **account** for accounting purposes
- Example: run an interactive job

Alias: si [...]

```
(access)$ srun -p interactive --qos qos-interactive --pty bash
(node)$ echo $SLURM_JOBID
2058
```

Simple interactive job running under SLURM

SLURM - job example (I)

Jobld=2058 JobName=bash UserId=vplugaru(5143) GroupId=clusterusers(666) MCS_label=N/A Priority =100 Nice=0 Account=ullpc QOS=qos-interactive 5 JobState=RUNNING Reason=None Dependency=(null) Requeue=1 Restarts=0 BatchFlag=0 Reboot=0 ExitCode=0:0 RunTime=00:00:08 TimeLimit=00:05:00 TimeMin=N/A SubmitTime=2017-06-09T16:49:42 EligibleTime=2017-06-09T16:49:42 StartTime=2017-06-09T16:49:42 EndTime=2017-06-09T16:54:42 Deadline=N PreemptTime=None SuspendTime=None SecsPreSuspend=0	
UserId=vplugaru(5143) GroupId=clusterusers(666) MCS_label=N/A Priority =100 Nice=0 Account=ulhpc QOS=qos=interactive 5 JobState=RUNNING Reason=None Dependency=(null) Requeue=1 Restarts=0 BatchFlag=0 Rebot=0 ExitCode=0:0 RunTime=00:00:08 TimeLimit=00:05:00 TimeMin=N/A SubmitTime=2017-06-09T16:49:42 EligibleTime=2017-06-09T16:49:42 StartTime=2017-06-09T16:49:42 EndTime=2017-06-09T16:54:42 Deadline=N 10 PreemptTime=None SuspendTime=None SecsPreSuspend=0	
Priority =100 Nice=0 Account=ulhpc QOS=qos-interactive 5 JobState=RUNNING Reason=None Dependency=(null) Requeue=1 Restarts=0 BatchFlag=0 Reboxt=0 ExitCode=0:0 RunTime=00:00:08 TimeLimit=00:05:00 TimeMin=N/A SubmitTime=2017-06-09T16:49:42 EligibleTime=2017-06-09T16:49:42 StartTime=2017-06-09T16:49:42 EndTime=2017-06-09T16:54:42 Deadline=N 10 PreemptTime=None SuspendTime=None SecsPreSuspend=0	
 JobState=RUNNING Reason=None Dependency=(null) Requeue=1 Restarts=0 BatchFlag=0 Reboot=0 ExitCode=0:0 RunTime=00:00:08 TimeLimit=00:05:00 TimeMin=N/A SubmitTime=2017-06-09T16:49:42 EligibleTime=2017-06-09T16:49:42 StartTime=2017-06-09T16:49:42 EndTime=2017-06-09T16:54:42 Deadline=N PreemptTime=None SuspendTime=None SecsPreSuspend=0 	
Requeue=1 Restarts=0 BatchFlag=0 Reboot=0 ExitCode=0:0 RunTime=00:00:08 TimeLimit=00:05:00 TimeMin=N/A SubmitTime=2017-06-09T16:49:42 EligibleTime=2017-06-09T16:49:42 StartTime=2017-06-09T16:49:42 EndTime=2017-06-09T16:54:42 Deadline=N PreemptTime=None SuspendTime=None SecsPreSuspend=0	
RunTime=00:00:08 TimeLimit=00:05:00 TimeMin=N/A SubmitTime=2017-06-09T16:49:42 EligibleTime=2017-06-09T16:49:42 StartTime=2017-06-09T16:49:42 EndTime=2017-06-09T16:54:42 Deadline=N PreemptTime=None SuspendTime=None SecsPreSuspend=0	
SubmitTime=2017-06-09T16:49:42 EligibleTime=2017-06-09T16:49:42 StartTime=2017-06-09T16:49:42 EndTime=2017-06-09T16:54:42 PreemptTime=None SuspendTime=None SecsPreSuspend=0	
StartTime=2017-06-09T16:49:42 EndTime=2017-06-09T16:54:42 Deadline=N 10 PreemptTime=None SuspendTime=None SecsPreSuspend=0	
10 PreemptTime=None SuspendTime=None SecsPreSuspend=0	'A
Partition = interactive AllocNode:Sid=access2:163067	
ReqNodeList=(null) ExcNodeList=(null)	
NodeList=iris-081	
BatchHost=iris-081	
15 NumNodes=1 NumCPUs=1 NumTasks=1 CPUs/Task=1 ReqB:S:C:T=0:0:*:*	
TRES=cpu=1,mem=4G,node=1	
Socks/Node=* NtasksPerN:B:S:C=1:0:*:* CoreSpec=*	
MinCPUsNode=1 MinMemoryCPU=4G MinTmpDiskNode=0	
Features=(null) DelayBoot=00:00:00	
20 Gres=(null) Reservation=(null)	
OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)	
Command=bash	
WorkDir=/mnt/irisgpfs/users/vplugaru	
Power=	

Simple interactive job running under SLURM

V. Plugaru (University of Luxembourg)

UL HPC School 2017

SLURM - job example (II)

- Many metrics available during and after job execution
 - \hookrightarrow including energy (J) but with caveats
 - \hookrightarrow job **steps** counted individually
 - $\,\hookrightarrow\,$ enabling advanced application debugging and optimization
- Job information available in easily parseable format (add -p/-P)

Job metrics after execution ended

V. Plugaru (University of Luxembourg)

SLURM - design for iris (I)

Partition	# Nodes	Default time	Max time	Max nodes/user
batch* interactive	80 (80%) 10 (10%)	0-2:0:0 0-1:0:0	5-0:0:0 0-4:0:0	unlimited 2
long	10 (10%)	0-2:0:0	30-0:0:0	2

SLURM - design for iris (I)

Partition	# Nodes	Default time	Max time	Max nodes/user
batch*	80 (80%)	0-2:0:0	5-0:0:0	unlimited
interactive	10 (10%)	0-1:0:0	0-4:0:0	2
long	10 (10%)	0-2:0:0	30-0:0:0	2

QoS	User group	Max nodes	Max jobs/user
qos-besteffort	ALL	no limit	
qos-batch	ALL	30	100
qos-interactive	ALL	8	10
qos-long	ALL	8	10
qos-batch-001	private	50	100
qos-interactive-001	private	2	10
qos-long-001	private	2	10

V. Plugaru (University of Luxembourg)

SLURM - design for iris (II)

- Default partition: batch, meant to receive most user jobs
 - $\,\hookrightarrow\,$ we hope to see majority of user jobs being able to scale
- All partitions have a correspondingly named QOS
 - \hookrightarrow granting resource access (long qos-long)
 - $\,\hookrightarrow\,$ for now users required to always specify QOS
 - $\,\hookrightarrow\,$ automation to make this even easier may be put in place soon

SLURM - design for iris (II)

- Default partition: batch, meant to receive most user jobs
 - $\,\hookrightarrow\,$ we hope to see majority of user jobs being able to scale
- All partitions have a correspondingly named QOS
 - \hookrightarrow granting resource access (long qos-long)
 - $\,\hookrightarrow\,$ for now users required to always specify QOS
 - $\,\hookrightarrow\,$ automation to make this even easier may be put in place soon
- Preemptible **besteffort** QOS available for **batch** and **interactive** partitions (but **not** for long)
 - $\,\hookrightarrow\,$ meant to ensure maximum resource utilization
 - $\,\hookrightarrow\,$ should be used together with checkpointable software
- QOSs specific to particular group accounts exist (discussed later)
 - \hookrightarrow granting additional accesses to platform contribuitors

SLURM - design for iris (III)

- Backfill scheduling for efficiency
 - \hookrightarrow multifactor job priority (size, age, fairshare, QOS, ...)
 - \hookrightarrow currently QOS weight set
 - $\,\hookrightarrow\,$ other factors/decay to be tuned after observation period
 - $\checkmark~$ i.e. with real user jobs so this starts now
- Resource selection: consumable resources
 - \hookrightarrow cores and memory as consumable (per-core scheduling)
 - \hookrightarrow block distribution for cores (best-fit algorithm)
 - \hookrightarrow default memory/core: 4GB (4.1GB maximum, rest is for OS)

SLURM - design for iris (III)

- Backfill scheduling for efficiency
 - \hookrightarrow multifactor job priority (size, age, fairshare, QOS, ...)
 - \hookrightarrow currently QOS weight set
 - $\,\hookrightarrow\,$ other factors/decay to be tuned after observation period
 - $\checkmark~$ i.e. with real user jobs so this starts now
- Resource selection: consumable resources
 - \hookrightarrow cores and memory as consumable (per-core scheduling)
 - \hookrightarrow block distribution for cores (best-fit algorithm)
 - $\,\hookrightarrow\,$ default memory/core: 4GB (4.1GB maximum, rest is for OS)
- Reliable user process tracking with cgroups
 - $\,\hookrightarrow\,$ cpusets used to constrain cores, RAM and swap (none!)
 - $\,\hookrightarrow\,$ task affinity used to bind tasks to cores (hwloc based)
- Hierarchical tree topology defined (network)
 - $\,\hookrightarrow\,$ for optimized job resource allocation

SLURM - design for iris (III)

- Backfill scheduling for efficiency
 - \hookrightarrow multifactor job priority (size, age, factor)
 - \hookrightarrow currently QOS weight set
 - \hookrightarrow other factors/decay to be tuned
 - ✓ i.e. with real user jobs
- Resource selection: consumation
 - \hookrightarrow cores and memory as
 - \hookrightarrow block distribution f
 - \hookrightarrow default memory

maximum, rest is for OS)

core scheduling)

Help with be needed on your part to optimite your job parameters! • Reliable user \hookrightarrow cpusets cores, RAM and swap (none!) \hookrightarrow task nd tasks to cores (hwloc based) Hierar \rightarrow for

LIXEMBOUR

period

A note on job priority

```
Job_priority =
    (PriorityWeightAge) * (age_factor) +
    (PriorityWeightFairshare) * (fair-share_factor) +
    (PriorityWeightJobSize) * (job_size_factor) +
    (PriorityWeightPartition) * (partition_factor) +
    (PriorityWeightQOS) * (QOS_factor) +
    SUM(TRES_weight_cpu * TRES_factor_cpu,
        TRES_weight_<type> * TRES_factor_<type>,
        ...)
```

- TRES Trackable RESources
 - $\hookrightarrow \ \mbox{CPU, Energy, Memory and Node tracked by default All details at slurm.schedmd.com/priority_multifactor.html}$
- The corresponding weights and reset periods we need to tune
 - $\,\hookrightarrow\,$ we require real application usage in order to set up initial values

SLURM - design for iris (IV)

Some Details on job permissions...

- Partition limits + association-based rule enforcement
 → association settings in SLURM's accounting database
- QOS limits imposed, jobs without QOS will not run (no default)
- Only users with existing associations able to run jobs

SLURM - design for iris (IV)

Some Details on job permissions...

- Partition limits + association-based rule enforcement
 → association settings in SLURM's accounting database
- QOS limits imposed, jobs without QOS will not run (no default)
- Only users with existing associations able to run jobs
- Best-effort jobs possible through preemptible QOS: qos-besteffort
 - $\,\hookrightarrow\,$ priority lower and preemptible by all other QOS
 - $\,\hookrightarrow\,$ preemption mode is requeue, requeueing enabled by default

SLURM - design for iris (IV)

Some Details on job permissions...

- Partition limits + association-based rule enforcement
 → association settings in SLURM's accounting database
- QOS limits imposed, jobs without QOS will not run (no default)
- Only users with existing associations able to run jobs
- Best-effort jobs possible through preemptible QOS: qos-besteffort
 - $\,\hookrightarrow\,$ priority lower and preemptible by all other QOS
 - $\,\hookrightarrow\,$ preemption mode is <code>requeue</code>, <code>requeueing</code> enabled by default
- On metrics: Accounting & profiling data for jobs sampled every 30s
 - $\,\hookrightarrow\,$ tracked: cpu, mem, energy
 - $\,\hookrightarrow\,$ energy data retrieved through the RAPL mechanism
 - ✓ caveat: for energy not all hw. that may consume power is monitored with RAPL (CPUs, GPUs and DRAM are included)

.

SLURM - design for iris (V)

- On tightly coupled parallel jobs (MPI)
 - \hookrightarrow Process Management Interface (PMI 2) recommended
 - $\,\hookrightarrow\,$ PMI2 used for better scalability and performance
 - ✓ faster application launches
 - ✓ tight integration w. SLURM's job steps mechanism (& metrics)
 - $\checkmark~$ we are also testing PMIx (PMI Exascale) support

SLURM - design for iris (V)

- On tightly coupled parallel jobs (MPI)
 - \hookrightarrow Process Management Interface (PMI 2) recommended
 - $\,\hookrightarrow\,$ PMI2 used for better scalability and performance
 - \checkmark faster application launches
 - ✓ tight integration w. SLURM's job steps mechanism (& metrics)
 - $\checkmark~$ we are also testing PMIx (PMI Exascale) support
 - $\,\hookrightarrow\,$ PMI2 enabled in default software set for IntelMPI and OpenMPI
 - $\checkmark~$ requires minimal adaptation in your workflows
 - ✓ replaces mpirun with SLURM's srun (at minimum)
 - $\checkmark\,$ if you compile/install your own MPI you'll need to configure it
 - $\hookrightarrow \ Example: \ {\tt https://hpc.uni.lu/users/docs/slurm_launchers.html}$

14 / 43

SLURM - design for iris (V)

- On tightly coupled parallel jobs (MPI)
 - \hookrightarrow Process Management Interface (PMI 2) recommended
 - $\,\hookrightarrow\,$ PMI2 used for better scalability and performance
 - \checkmark faster application launches
 - ✓ tight integration w. SLURM's job steps mechanism (& metrics)
 - $\checkmark~$ we are also testing PMIx (PMI Exascale) support
 - $\,\hookrightarrow\,$ PMI2 enabled in default software set for IntelMPI and OpenMPI
 - ✓ requires minimal adaptation in your workflows
 - ✓ replaces mpirun with SLURM's srun (at minimum)
 - $\checkmark\,$ if you compile/install your own MPI you'll need to configure it
 - ← **Example:** https://hpc.uni.lu/users/docs/slurm_launchers.html

• SSH-based connections between computing nodes still possible

- \hookrightarrow other MPI implementations can still use ssh as launcher
 - $\checkmark~$ but really shouldn't need to, PMI2 support is everywhere
- \hookrightarrow user jobs are tracked, no job == no access to node

SLURM - bank (group) accounts (I)

- Hierarchical bank (group) accounts
- UL as root account, then underneath accounts for the 3 Faculties and 3 ICs
- All Prof., Group leaders and above have bank accounts, linked to a Faculty or IC
 - \hookrightarrow with their own name: Name.Surname
- All user accounts linked to a bank account
 - \hookrightarrow including Profs.'s own user
- Iris accounting DB initialized with:

- \hookrightarrow 70 group accounts from all Faculties/ICs
- \hookrightarrow comprising 406 users

Will allow better usage tracking and reporting than was possible before.

V. Plugaru (University of Luxembourg)

SLURM - brief commands overview

- squeue: view queued jobs
- sinfo: view queue, partition and node info,
- sbatch: submit job for batch (scripted) execution
- srun: submit interactive job, run (parallel) job step
- scancel: cancel queued jobs

SLURM - brief commands overview

- squeue: view queued jobs
- sinfo: view queue, partition and node info,
- sbatch: submit job for batch (scripted) execution
- srun: submit interactive job, run (parallel) job step
- scancel: cancel queued jobs

• scontrol: detailed control and info. on jobs, queues, partitions

• sstat: view system-level utilization (memory, I/O, energy)

 $\, \hookrightarrow \, \text{ for running jobs } / \text{ job steps}$

- sacct: view system-level utilization
 - $\,\hookrightarrow\,$ for completed jobs / job steps (accounting DB)
- sacctmgr: view and manage SLURM accounting data

SLURM - brief commands overview

- squeue: view queued jobs
- sinfo: view queue, partition and node info,
- sbatch: submit job for batch (scripted) execution
- srun: submit interactive job, run (parallel) job step
- scancel: cancel queued jobs
- scontrol: detailed control and info. on jobs, queues, partitions
- sstat: view system-level utilization (memory, I/O, energy)
 - $\,\hookrightarrow\,$ for running jobs / job steps
- sacct: view system-level utilization
 - $\,\hookrightarrow\,$ for completed jobs / job steps (accounting DB)
- sacctmgr: view and manage SLURM accounting data
- sprio: view job priority factors
- sshare: view accounting share info. (usage, fair-share, etc.)

SLURM - basic commands

Action	SLURM command
Submit passive/batch job	sbatch \$script
Start interactive job	srunpty bash -i
Queue status	squeue
User job status	squeue -u \$user
Specific job status (detailed)	scontrol show job \$jobid
Job metrics (detailed)	sstatjob \$jobid -l
Job accounting status (detailed)	sacctjob \$jobid -l
Delete (running/waiting) job	scancel \$jobid
Hold job	scontrol hold \$jobid
Resume held job	scontrol release \$jobid
Node list and their properties	scontrol show nodes

QOS specification always necessary, also partition if not "batch"

SLURM - basic options for sbatch/srun

Action	sbatch/srun option
Request \$n distributed nodes	-N \$n
Request \$m memory per node	mem=\$mGB
Request \$mc memory per core (logical cpu)	mem-per-cpu=\$mcGB
Request job walltime	time=d-hh:mm:ss
Request \$tn tasks per node	ntasks-per-node=\$tn
Request \$ct cores per task (multithreading)	-c \$ct
Request $total # of tasks$	-n \$nt
Request to start job at specific \$time	begin \$time
Specify job name as \$name	-J \$name
Specify job partition	-p \$partition
Specify QOS	qos \$qos
Specify account	-A \$account
Specify email address	mail-user=\$email
Request email on event	mail-type=all[,begin,end,fail]
Use the above actions in a batch script	#SBATCH \$option

SLURM - basic options for sbatch/srun

Action	sbatch/srun option
Request \$n distributed nodes	-N \$n
Request \$m memory per node	mem=\$mGB
Request \$mc memory per core (logical cpu)	mem-per-cpu=\$mcGB
Request job walltime	time=d-hh:mm:ss
Request \$tn tasks per node	ntasks-per-node=\$tn
Request \$ct cores per task (multithreading)	-c \$ct
Request $total # of tasks$	-n \$nt
Request to start job at specific \$time	begin \$time
Specify job name as \$name	-J \$name
Specify job partition	-p \$partition
Specify QOS	qos \$qos
Specify account	-A \$account
Specify email address	mail-user=\$email
Request email on event	mail-type=all[,begin,end,fail]
Use the above actions in a batch script	#SBATCH \$option

- Diff. between -N, -c, -n, --ntasks-per-node, --ntasks-per-core ?
- Normally you'd specify -N and --ntasks-per-node
 - $\,\hookrightarrow\,$ fix the latter to 1 and add -c for MPI+OpenMP jobs
- If your application is scalable, just -n might be enough
 - \rightarrow iris is homogeneous (for now)

V. Plugaru (University of Luxembourg)

SLURM - more options for sbatch/srun

Start job when (dependencies)	sbatch/srun option
these other jobs have started these other jobs have ended these other jobs have ended with no errors these other jobs have ended with errors all other jobs with the same name have ended	 -d after:\$jobid1:\$jobid2 -d afterany:\$jobid1:\$jobid2 -d afterok:\$jobid1:\$jobid2 -d afternok:\$jobid1:\$jobid2 -d singleton

Job dependencies and especially "singleton" can be very useful!

SLURM - more options for sbatch/srun

Start job when (dependencies)	sbatch/srun option
these other jobs have started these other jobs have ended these other jobs have ended with no errors these other jobs have ended with errors all other jobs with the same name have ended	 -d after:\$jobid1:\$jobid2 -d afterany:\$jobid1:\$jobid2 -d afterok:\$jobid1:\$jobid2 -d afternok:\$jobid1:\$jobid2 -d singleton

Job dependencies and especially "singleton" can be very useful!

Allocate job at (specified time)	sbatch/srun option
exact time today	begin=16:00
tomorrow	begin=tomorrow
specific time relative to now	begin=now+2hours
given date and time	begin=2017-06-23T07:30:00

Jobs run like this will wait as PD - Pending with "(BeginTime)" reason

SLURM - more options for sbatch/srun

Start job when (dependencies)	sbatch/srun option
these other jobs have started	-d after:\$jobid1:\$jobid2
these other jobs have ended	-d afterany:\$jobid1:\$jobid2
these other jobs have ended with no errors	-d afterok:\$jobid1:\$jobid2
these other jobs have ended with errors	-d afternok:\$jobid1:\$jobid2
all other jobs with the same name have ended	-d singleton

Job dependencies and especially "singleton" can be very useful!

Allocate job at (specified time)	sbatch/srun option
exact time today	begin=16:00
specific time relative to now	begin=now+2hours
given date and time	begin=2017-06-23T07:30:00

Jobs run like this will wait as PD - Pending with "(BeginTime)" reason

Other scheduling request	sbatch/srun option	_
Ask for minimum/maximum # of nodes Ask for minimum run time (start job faster) Ask to remove job if deadline can't be met Run job within pre-created (admin) reservation Allocate resources as specified job	-N minnodes-maxnodes time-min=d-hh:mm:ss deadline=YYYY-MM-DD[THH:MM[:SS]] reservation=*feservationname jobid=\$jobid	uni.lı
Can usejobid to connect to run Plugaru (University of Luxembourg)	nning job (different than sattach!) UL HPC School 2017	UNIVERSITÉ DI LUXEMBOUR

SLURM - environment variables

- 53 input env. vars. can be used to define job parameters
 - \hookrightarrow almost all have a command line equivallent
- up to 59 output env. vars. available within job environment
 - \hookrightarrow some common ones:

Description	Environment variable
Job ID	\$SLURM_JOBID
Job name	\$SLURM_JOB_NAME
Name of account under which job runs	<pre>\$SLURM_JOB_ACCOUNT</pre>
Name of partition job is running in	\$SLURM_JOB_PARTITION
Name of QOS the job is running with	\$SLURM_JOB_QOS
Name of job's advance reservation	<pre>\$SLURM_JOB_RESERVATION</pre>
Job submission directory	\$SLURM_SUBMIT_DIR
Number of nodes assigned to the job	\$SLURM_NNODES
Name of nodes assigned to the job	<pre>\$SLURM_JOB_NODELIST</pre>
Number of tasks for the job	\$SLURM_NTASKS or \$SLURM_NPROCS
Number of cores for the job on current node	<pre>\$SLURM_JOB_CPUS_PER_NODE</pre>
Memory allocated to the job per node	\$SLURM_MEM_PER_NODE
Memory allocated per core	<pre>\$SLURM_MEM_PER_CPU</pre>
Task count within a job array	<pre>\$SLURM_ARRAY_TASK_COUNT</pre>
Task ID assigned within a job array	<pre>\$SLURM_ARRAY_TASK_ID</pre>

20 / 43

/. Plugaru (University of Luxembourg)

UL HPC School 2017

.

Usage examples (I)

> Interactive jobs

srun -p interactive --qos qos-interactive --time=0:30 -N2 --ntasks-per-node=4 --pty bash -i srun -p interactive --qos qos-interactive --pty --x11 bash -i srun -p interactive --qos qos-besteffort --pty bash -i

Usage examples (I)

> Interactive jobs

srun -p interactive --qos qos-interactive --time=0:30 -N2 --ntasks-per-node=4 --pty bash -i srun -p interactive --qos qos-interactive --pty --x11 bash -i srun -p interactive --qos qos-besteffort --pty bash -i

> Batch jobs

sbatch job.sh sbatch -N 2 job.sh sbatch -p batch --qos qos-batch job.sh sbatch -p long --qos qos-long job.sh sbatch --begin=2017-06-23T07:30:00 job.sh sbatch -p batch --qos qos-besteffort job.sh

Usage examples (I)

> Interactive jobs

```
srun -p interactive --qos qos-interactive --time=0:30 -N2 --ntasks-per-node=4 --pty bash -i
srun -p interactive --qos qos-interactive --pty --x11 bash -i
srun -p interactive --qos qos-besteffort --pty bash -i
```

> Batch jobs

```
sbatch job.sh
sbatch -N 2 job.sh
sbatch -p batch --qos qos-batch job.sh
sbatch -p long --qos qos-long job.sh
sbatch --begin=2017-06-23T07:30:00 job.sh
sbatch -p batch --qos qos-besteffort job.sh
```

Status and details for partitions, nodes, reservations

```
squeue / squeue -l / squeue -l / squeue -l -p batch / squeue -t PD scontrol show nodes / scontrol show nodes nodename sinfo -s / sinfo -N sinfo -T
```


Usage examples (II)

Collecting job information, priority, expected start time

scontrol show job jobid # this is only available while job is in the queue + 5 minutes sprio -1 squeue --start -u SUSER

Usage examples (II)

Collecting job information, priority, expected start time

scontrol show job jobid # this is only available while job is in the queue + 5 minutes sprio -1 squeue --start -u SUSER

Running job metrics – sstat tool

sstat -j \$jobid / sstat -j \$jobid -l
sstat -j \$jobid --format=AveCPU,AveRSS,AveVMSize,MaxRSS,MaxVMSize
sstat -p j \$jobid1,\$jobid2 --format=AveCPU,AveRSS,AveVMSize,MaxRSS,MaxVMSize

22 / 43

Usage examples (II)

Collecting job information, priority, expected start time

scontrol show job jobid # this is only available while job is in the queue + 5 minutes sprio -1 squeue --start -u SUSER

Running job metrics – sstat tool

```
sstat -j $jobid / sstat -j $jobid -l
sstat -j $jobid --format=AveCPU,AveRSS,AveVMSize,MaxRSS,MaxVMSize
sstat -p j $jobid1,$jobid2 --format=AveCPU,AveRSS,AveVMSize,MaxRSS,MaxVMSize
```

Completed job metrics - sacct tool

```
sacct -j $jobid / sacct -j $jobid -l
sacct -p -j $jobid -format=account,user,jobid,jobname,partition,state,elapsed,elapsedraw,
\ start,end,maxrss,maxvmsize,consumedenergy,consumedenergyraw,nnodes,ncpus,nodelist
sacct --starttime 2017-06-12 -u $USER
```


Usage examples (III)

Controlling queued and running jobs

scontrol hold \$jobid scontrol release \$jobid scontrol resume \$jobid scancel \$jobid scancel -n \$jobname scancel -u \$USER scancel -u \$USER -p batch scontrol requeue \$jobid

Usage examples (III)

Controlling queued and running jobs

scontrol hold \$jobid scontrol release \$jobid scontrol resume \$jobid scancel \$jobid scancel -n \$jobname scancel -n \$jobname scancel -u \$USER -p batch scontrol requeue \$jobid

Checking accounting links and QOS available for you

sacctmgr show user \$USER format=user%20s,defaultaccount%30s sacctmgr list association where users=\$USER format=account%30s,user%20s,qos%120s

Usage examples (III)

Controlling queued and running jobs

scontrol hold \$jobid scontrol release \$jobid scontrol resume \$jobid scancel \$jobid scancel -n \$jobname scancel -n \$jobname scancel -u \$USER -p batch scontrol requeue \$jobid

Checking accounting links and QOS available for you

sacctmgr show user \$USER format=user%20s,defaultaccount%30s sacctmgr list association where users=\$USER format=account%30s,user%20s,qos%120s

Checking accounting share info - usage, fair-share, etc.

```
sshare -U
sshare -A $accountname
sshare -A $(sacctmgr -n show user $USER format=defaultaccount%30s)
sshare -a
```


Job launchers - basic (I)

```
#!/bin/bash -l
#SBATCH -N 1
#SBATCH --ntasks-per-node=1
#SBATCH --time=0-00:05:00
#SBATCH -p batch
#SBATCH -pos=qos-batch
```

echo "Hello from the batch queue on node \${SLURM_NODELIST}"
Your more useful application can be started below!

Job launchers - basic (II)

```
#!/bin/bash -l
#SBATCH -N 2
#SBATCH --ntasks-per-node=2
#SBATCH --time=0-03:00:00
#SBATCH -p batch
#SBATCH -- qos=qos-batch
echo "== Starting run at $(date)"
echo "== Job ID: ${SLURM_JOBID}"
echo "== Node list: ${SLURM_NODELIST}"
echo "== Submit dir. : ${SLURM_SUBMIT_DIR}"
# Your more useful application can be started below!
```


Job launchers - basic (III)

```
#!/bin/bash -l
#SBATCH -J MyTestJob
#SBATCH --mail-type=end, fail
#SBATCH --mail-user=Your.Email@Address.lu
#SBATCH -N 2
#SBATCH --ntasks-per-node=2
#SBATCH --time=0-03:00:00
#SBATCH -p batch
#SBATCH -- gos=gos-batch
echo "== Starting run at $(date)"
echo "== Job ID: ${SLURM_JOBID}"
echo "== Node list: ${SLURM NODELIST}"
echo "== Submit dir. : ${SLURM_SUBMIT_DIR}"
# Your more useful application can be started below!
```


Job launchers - requesting memory

```
#1/bin/bash -1
#SBATCH -J MyLargeMemorySequentialJob
#SBATCH --mail-type=end, fail
#SBATCH -- mail-user=Your Email@Address.lu
\#SBATCH - N 1
#SBATCH --ntasks-per-node=1
#SBATCH --mem=64GB
#SBATCH --time=1-00:00:00
#SBATCH -p batch
#SBATCH --qos=qos-batch
echo "== Starting run at $(date)"
echo "== Job ID: ${SLURM JOBID}"
echo "== Node list: ${SLURM_NODELIST}"
echo "== Submit dir. : ${SLURM SUBMIT DIR}"
# Your more useful application can be started below!
```

Use "mem" to request memory per node for low #core jobs

Job launchers - long jobs

```
#1/bin/bash -1
#SBATCH -J MyLongJob
#SBATCH --mail-type=all
#SBATCH -- mail-user=Your Email@Address.lu
\#SBATCH - N 1
#SBATCH --ntasks-per-node=1
#SBATCH -- time=3-00:00:00
#SBATCH -p long
#SBATCH -- aos=aos-lona
echo "== Starting run at $(date)"
echo "== Job ID: ${SLURM_JOBID}"
echo "== Node list: ${SLURM NODELIST}"
echo "== Submit dir. : ${SLURM SUBMIT DIR}"
# Your more useful application can be started below!
```

Longer walltime now possible but you should not (!) rely on it. Always prefer batch and requeue-able jobs.

Job launchers - besteffort

```
#!/bin/bash -l
#SBATCH -J MyRerunnableJob
#SBATCH --mail-type=end, fail
#SBATCH --mail-user=Your.Email@Address.lu
\#SBATCH - N 1
#SBATCH --ntasks-per-node=28
#SBATCH --time=0-12:00:00
#SBATCH -p batch
#SBATCH -- qos=qos-besteffort
#SBATCH --requeue
echo "== Starting run at $(date)"
echo "== Job ID: ${SLURM JOBID}"
echo "== Node list: ${SLURM_NODELIST}"
echo "== Submit dir. : ${SLURM SUBMIT DIR}"
# Your more useful application can be started below!
```

Many scientific applications support internal state saving and restart! We will also discuss system-level checkpoint-restart with DMTCP.

Job launchers - threaded parallel

```
#!/bin/bash -l
#SBATCH -N 1
#SBATCH --ntasks-per-node=1
#SBATCH -c 28
#SBATCH --time=0-01:00:00
#SBATCH -p batch
#SBATCH --qos=qos-batch
```

```
export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}
/path/to/your/threaded.app
```

By threaded we mean pthreads/OpenMP shared-memory applications.

Job launchers - MATLAB

```
#!/bin/bash -l
#SBATCH -N 1
#SBATCH --ntasks-per-node=28
#SBATCH -c 1
#SBATCH -c 1
#SBATCH --time=0-01:00:00
#SBATCH -p batch
#SBATCH --qos=qos-batch
```

```
module load base/MATLAB
matlab -nodisplay -nosplash < /path/to/infile > /path/to/outfile
```

MATLAB spawns processes, limited for now to single node execution. We are still waiting for Distributed Computing Server availability.

Job launchers - MATLAB

```
#!/bin/bash -l
#SBATCH -N 1
#SBATCH --ntasks-per-node=28
#SBATCH -c 1
#SBATCH -c 1
#SBATCH --time=0-01:00:00
#SBATCH -p batch
#SBATCH --qos=qos-batch
```

```
module load base/MATLAB
matlab -nodisplay -nosplash < /path/to/infile > /path/to/outfile
```

MATLAB spawns processes, limited for now to single node execution. We are still waiting for Distributed Computing Server availability.

As of the HPC School - June 2017 edition, the UL Matlab license server is not yet reachable from the **iris** cluster (dedicated tutorial will use **gaia**).

A note on parallel jobs

Currently the iris cluster is homogeneous. Its core networking is a non-blocking fat-tree.

- For now simply requesting a number of tasks (with 1 core/task) should be performant
- Different MPI implementations will however behave differently
 - $\hookrightarrow \text{ very recent/latest versions available on iris for IntelMPI,} \\ OpenMPI, MVAPICH2$
 - \hookrightarrow we ask that you let us know any perceived benefit for your applications when using one or the other
- We will soon make available optimized MPI-layer parameters obtained during tuning executions

 $\,\hookrightarrow\,$ and hope they will improve even more your time to solution

Job launchers - IntelMPI

```
#!/bin/bash -l
#SBATCH -n 128
#SBATCH -c 1
#SBATCH -c 1
#SBATCH --time=0-01:00:00
#SBATCH -p batch
#SBATCH -qos=qos-batch
```

module load toolchain/intel
srun -n \$SLURM_NTASKS /path/to/your/intel-toolchain-compiled-app

IntelMPI is configured to use PMI2 for process management (optimal). Bare mpirun will not work for now.

Job launchers - OpenMPI

```
#!/bin/bash -l
#SBATCH -n 128
#SBATCH -c 1
#SBATCH -c 1
#SBATCH --time=0-01:00:00
#SBATCH -p batch
#SBATCH -qos=qos-batch
```

module load toolchain/foss
srun -n \$SLURM_NTASKS /path/to/your/foss-toolchain-compiled-app

OpenMPI also uses PMI2 (again, optimal). Bare mpirun does work but is not recommended.

You can easily generate a hostfile from within a SLURM job with: srun hostname | sort -n > hostfile

Job launchers - MPI+OpenMP

```
#!/bin/bash -l
#SBATCH -N 10
#SBATCH --ntasks-per-node=1
#SBATCH -c 28
#SBATCH -c 28
#SBATCH --time=0-01:00:00
#SBATCH -p batch
#SBATCH -p batch
```

module load toolchain/intel
export OMP_NUM_THREADS=\${SLURM_CPUS_PER_TASK}
srun -n \$SLURM_NTASKS /path/to/your/parallel-hybrid-app

Compile and use your applications in hybrid MPI+OpenMP mode when you can for best possible performance.

UL HPC School 2017

OAR and SLURM

Summary

SLURM workload manager SLURM concepts and design for iris Running jobs with SLURM

V. Plugaru (University of Luxembourg)

OAR and SLURM

Notes on OAR

- OAR will remain the workload manager of Gaia and Chaos
 - \hookrightarrow celebrating **4158964** jobs on Gaia! (2017-06-11)
 - $\,\hookrightarrow\,$ celebrating 1570698 jobs on Chaos! (2017-06-11)
- Many of its features are common to other workload managers, incl. SLURM
 - $\,\hookrightarrow\,$ some things are exactly the same
 - $\,\hookrightarrow\,$ but some things work in a different way
 - $\,\hookrightarrow\,\ldots\,$ and some have no equivallent or are widely different
- An adjustment period for you and us is needed
 - $\,\hookrightarrow\,$ next slides show a brief transition guide

37 / 43

OAR/SLURM - commands guide

Command	OAR (gaia/chaos)	SLURM (iris)
Submit passive/batch job	oarsub -S \$script	sbatch \$script
Start interactive job	oarsub -I	<pre>srun -p interactiveqos qos-interactivepty bash -i</pre>
Queue status	oarstat	squeue
User job status	oarstat -u \$user	squeue -u \$user
Specific job status (detailed)	oarstat -f -j \$jobid	scontrol show job \$jobid
Delete (running/waiting) job	oardel \$jobid	scancel \$jobid
Hold job	oarhold \$jobid	scontrol hold \$jobid
Resume held job	oarresume \$jobid	scontrol release \$jobid
Node list and properties	oarnodes	scontrol show nodes

Similar yet different? Many specifics will actually come from the way Iris is set up.

OAR and SLURM

OAR/SLURM - job specifications

Specification	OAR	SLURM
Script directive	#OAR	#SBATCH
Nodes request	-1 nodes=\$count	-N \$min-\$max
Cores request	-1 core=\$count	-n \$count
Cores-per-node request	-1	-N \$ncount
	nodes=\$ncount/core=\$ccount	ntasks-per-node=\$ccount
Walltime request	-l [],walltime=hh:mm:ss	-t \$min OR -t \$days-hh:mm:ss
Job array	array \$count	array \$specification
Job name	-n \$name	-J \$name
Job dependency	-a \$jobid	-d \$specification
Property request	-p "\$property=\$value"	-C \$specification

Job specifications will need most adjustment on your side ... but thankfully Iris has a homogeneous configuration. Running things in an optimal way will be much easier.

OAR and SLURM

OAR/SLURM - env. vars.

Environment variable	OAR	SLURM
Job ID	\$OAR_JOB_ID	\$SLURM_JOB_ID
Resource list	\$OAR_NODEFILE	\$SLURM_NODELIST #List not file! See below.
Job name	\$OAR_JOB_NAME	\$SLURM_JOB_NAME
Submitting user name	\$OAR_USER	\$SLURM_JOB_USER
Task ID within job array	\$OAR_ARRAY_INDEX	<pre>\$SLURM_ARRAY_TASK_ID</pre>
Working directory at submission	<pre>\$OAR_WORKING_DIRECTORY</pre>	\$SLURM_SUBMIT_DIR

Check available variables: env | egrep "OAR|SLURM" Generate hostfile: srun hostname | sort -n > hostfile

Summary

SLURM workload manager SLURM concepts and design for iris Running jobs with SLURM

3 OAR and SLURM

V. Plugaru (University of Luxembourg)

UL HPC School 2017

Conclusion

Conclusion and Practical Session start

We've discussed

- The design of SLURM for the iris cluster
- The permissions system in use through group accounts and QOS
- Main SLURM tools and how to use them
- Job types possible with SLURM on iris
- SLURM job launchers for sequential and parallel applications
- Transitioning from OAR to SLURM

And now..

Short DEMO time!

Conclusion

Conclusion and Practical Session start

We've discussed

- The design of SLURM for the iris cluster
- The permissions system in use through group accounts and QOS
- Main SLURM tools and how to use them
- Job types possible with SLURM on iris
- SLURM job launchers for sequential and parallel applications
- Transitioning from OAR to SLURM

And now..

Short DEMO time!

V. Plugaru (University of Luxembourg)

Thank you for your attention...

Questions?

http://hpc.uni.lu

The UL High Performance Computing (HPC) Team

University of Luxembourg, Belval Campus: Maison du Nombre, 4th floor 2, avenue de l'Université L-4365 Esch-sur-Alzette mail: hpc@uni.lu

SLURM workload manager SLURM concepts and design for iris Running jobs with SLURM

